首页 > L1

《理想数、簇与算法第2版》电子版-2004-4_北京世界图书出版公司_Cox

《理想数、簇与算法第2版》《理想数、簇与算法第2版》电子版-2004-4_北京世界图书出版公司_Cox

《理想数、簇与算法第2版》

出版时间:2004-4
出版社:北京世界图书出版公司
作者:Cox
页数:536


《理想数、簇与算法第2版》内容概要[E]

We wrote this book to introduce undergraduates to some interesting ideas in algebraic geometry and commutative algebra。 Until recently,these topics involved a lot of abstract mathematics and were only taught in graduate school。 But in the 1960s,Buchberger and Hironaka discovered new algorithms for manipulating systems of polynomial equations。 Fueled by the development of computers fast enough to run these algorithms,the last two decades have seen a minor revolution in commutative algebra。 The ability to compute efficiently with polynomial equations has made it possible to investigate complicated examples that would be impossible to do by hand,and has changed the practice of much research in algebraic geometry。 This has also enhanced the importance of the subject for computer scientists and engineers,who have begun to use these techniques in a whole range of problems。

《理想数、簇与算法第2版》书籍目录[E]

PrefacetotheFirstEditionPrefacetotheSecondEdition 1. Geometry,cAlgebra,candAlgorithms
1. PolynomialsandAffineSpace  2. AffineVarieties
3. ParametrizationsofAffineVarieties
4. Ideals
5. PolynomialsofOneVariable 2. GroebnerBases
1. Introduction
2. OrderingscontheMonomialsink[x1. ,....,xn]
3. ADivisionAlgorithmink[x1. ,....,xn]
4. MonomialIdealsandDickson'scLemma
5. TheHilbertBasisTheoremandGroebnerBases
6. .PropertiesofGroebnerBases
7..Buchberger'scAlgorithm
8. .FirstApplicationsofGroebnerBases
9.(Optional)ImprovementsonBuchberger'scAlgorithm 3. EliminationTheory
1. TheEliminationandExtensionTheorems
2. TheGeometryofElimination
3. Implicitization
4. SingularPointsandEnvelopes
5. UniqueFactorizationandResultants
6. ResultantsandtheExtensionTheorem 4. TheAlgebra-GeometryDictionary
1. Hilbert'sNullstellensatz
2. RadicalIdealscandtheIdeal-VarietyCorrespondence
3. Sums,cProducts,candIntersetionscofIdeals
4. ZariskiClosureandQuotientscofIdeals
5. IrreducibleVarietiesandPrimeIdeals
6. DecompositionofaVarietycintoIrreducibles
7.(Optional)PrimaryDecompositionofIdeals
8. Summary 5. PolynomialandRationalFunctionsonaVariety
1. PolynomialMappings
2. QuotientsofPolynomialRings
3. AlgorithmicComputationscink[x1. ,....,xn]I
4. TheCoordinateRingofanAffineVariety
5. RationalFunctionsconcaVariety
6. (Optional)ProofcoftheClosureTheorem 6. RoboticsandAutomaticGeometricTheoremProving
1. GeometricDescriptionofRobots
2. TheForwardKinematicProblem
3. TheInverseKinematicProblemandMotionPlanning
4. AutomaticGeometricTheoremProving
5. Wu'sMetho 7.InvariantTheoryofFiniteGroups
1. SymmetricPolynomials
2. FiniteMatrixGroupsandRingsofInvariants
3. GeneratorsfortheRingofInvariants
4. RelationsAmongGeneratorsandtheGeometryofOrbits 8. ProjectiveAlgebraicGeometry
1. TheProjetivePlane
2. ProjectiveSpaceandProjectiveVarieties
3. TheProjectiveAlgebra-GeometryDictionary
4. TheProjectiveClosureofanAffineVariety
5. ProjectiveEliminationTheory
6. TheGeometryofQuadricHypersuffaces
7. Bezout'sTheorem 9.TheDimensionofaVariety
1. TheVarietyofaMonomialIdea
2. heComplementofaMonomialIdeal
3. TheHilbertFunctionandtheDimensionofaVariety
4. ElementarycPropertiescofcDimension
5. DimensionandAlgebraicIndependence
6. DimensionandNonsingularity
7. TheTangentCone AppendixA.SomeConceptscfromAlgebra 1. FieldsandRings 2. Groups 3. Determinants AppendixB.Pseudocode 1. Inputs,Outputs,Variables,andConstants 2. AssignmentStatements 3. LoopingStructures 4. BranchingStructures AppendixC.ComputerAlgebraSystems 1. AXIOM 2. Maple 3. Mathematica 4. REDUCE 5. OthercSystems AppendixcD.cIndependentcProjects 1. GeneralcComments 2. SuggestedcProjectsReferencesIndex


  • 暂无相关文章